In Vitro selectivity of an acyclic cucurbit[n]uril molecular container towards neuromuscular blocking agents relative to commonly used drugs.

نویسندگان

  • Shweta Ganapati
  • Peter Y Zavalij
  • Matthias Eikermann
  • Lyle Isaacs
چکیده

An acyclic cucurbit[n]uril (CB[n]) based molecular container (2, a.k.a. Calabadion 2) binds to both amino-steroidal and benzylisoquinolinium type neuromuscular blocking agents (NMBAs) in vitro, and reverses the effect of these drugs in vivo displaying faster recovery times than placebo and the γ-cyclodextrin (CD) based and clinically used reversal agent Sugammadex. In this study we have assessed the potential for other drugs commonly used during and after surgery (e.g. antibiotics, antihistamines, and antiarrhythmics) to interfere with the ability of 2 to bind NMBAs rocuronium and cisatracurium in vitro. We measured the binding affinities (Ka, M(-1)) of twenty seven commonly used drugs towards 2 and simulated the equilibrium between 2, NMBA, and drug based on their standard clinical dosages to calculate the equilibrium concentration of 2·NMBA in the presence of the various drugs. We found that none of the 27 drugs studied possess the combination of a high enough binding affinity with 2 and a high enough standard dosage to be able to promote the competitive dissociation (a.k.a. displacement interactions) of the 2·NMBA complex with the formation of the 2·drug complex. Finally, we used the simulations to explore how the potential for displacement interactions is affected by a number of factors including the Ka of the 2·NMBA complex, the Ka of the AChR·NMBA complex, the Ka of the 2·drug complex, and the dosage of the drug.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers

Conspectus This Account focuses on stimuli responsive systems that function in aqueous solution using examples drawn from the work of the Isaacs group using cucurbit[n]uril (CB[n]) molecular containers as key recognition elements. Our entry into the area of stimuli responsive systems began with the preparation of glycoluril derived molecular clips that efficiently distinguish between self and n...

متن کامل

Toxicology and Drug Delivery by Cucurbit[n]uril Type Molecular Containers

BACKGROUND Many drug delivery systems are based on the ability of certain macrocyclic compounds - such as cyclodextrins (CDs) - to act as molecular containers for pharmaceutical agents in water. Indeed beta-CD and its derivatives have been widely used in the formulation of hydrophobic pharmaceuticals despite their poor abilities to act as a molecular container (e.g., weak binding (K(a)<10(4) M(...

متن کامل

Acyclic Cucurbit[n]uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs

We studied the influence of the aromatic sidewalls on the ability of acyclic CB[n]-type molecular containers (1a-1e) to act as solubilizing agents for 19 insoluble drugs including the developmental anticancer agent PBS-1086. All five containers exhibit good water solubility and weak self-association (Ks ≤ 624 M(-1)). We constructed phase solubility diagrams to extract Krel and Ka values for the...

متن کامل

Cucurbit[7]uril: an amorphous molecular material for highly selective carbon dioxide uptake.

Cucurbit[7]uril (CB[7]), in its amorphous solid state, shows one of the highest CO(2) sorption capacities among known organic porous materials at 298 K and 0.1 and 1 bar. In addition to the highest CO(2) capacity, CB[7] also shows remarkable selectivity of CO(2) over N(2) and CH(4). These properties, along with the existence of readily available precursors, indicate amorphous CB[7] might find a...

متن کامل

Encapsulation of charge-diffuse peralkylated onium cations in the cavity of cucurbit[7]uril.

Cucurbit[7]uril binds, with considerable size selectivity, NR(4)(+), PR(4)(+), and SR(3)(+) cations (R=Me, Et, (n)Pr, (n)Bu), with the smaller guests inside its cavity, rather than at the carbonyl-lined portals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2016